In physics, the twin paradox is a thought experiment in special relativity involving identical twins, one of whom makes a journey into space in a high-speed rocket and returns home to find that the twin who remained on Earth has aged more. This result appears puzzling because each twin sees the other twin as moving, and so, according to an incorrect and naive application of time dilation and the principle of relativity, each should paradoxically find the other to have aged less. However, this scenario can be resolved within the standard framework of special relativity: the travelling twin's trajectory involves two different inertial frames, one for the outbound journey and one for the inbound journey, and so there is no symmetry between the spacetime paths of the twins. Therefore, the twin paradox is not a paradox in the sense of a logical contradiction.

Time dilation has been verified experimentally by precise measurements of atomic clocks flown in aircraft and satellites. For example, gravitational time dilation and special relativity together have been used to explain the Hafele–Keating experiment. It was also confirmed in particle accelerators by measuring the time

Travellers' perspective

The ship's crew members also calculate the particulars of their trip from their perspective. They know that the distant star system and the Earth are moving relative to the ship at speed v during the trip. In their rest frame the distance between the Earth and the star system is Îµd = 0.6 × 4 = 2.4 light years (length contraction), for both the outward and return journeys. Each half of the journey takes Îµd / v = 2.4 / 0.8 = 3 years, and the round trip takes twice as long (6 years). Their calculations show that they will arrive home having aged 6 years. The travelers' final calculation about their aging is in complete agreement with the calculations of those on Earth, though they experience the trip quite differently from those who stay at home.

Earth perspective

The Earth-based mission control reasons about the journey this way: the round trip will take t = 2d/v = 10 years in Earth time (i.e. everybody on Earth will be 10 years older when the ship returns). The amount of time as measured on the ship's clocks and the aging of the travelers during their trip will be reduced by the factor , the reciprocal of the Lorentz factor (time dilation). In this case Îµ = 0.6 and the travelers will have aged only 0.6 × 10 = 6 years when they return.


You May Also Like This Article: expansion of universe